Войти

ПРИМЕНЕНИЕ ВЫСОКОПРОЧНЫХ СТАЛЕЙ В СТРОИТЕЛЬСТВЕ ТЕПЛОВЫХ ЭЛЕСТРОСТАНЦИЙ


Статья опубликована в сборнике журнале «Градостроительство»

Шашков А.А.; Шистеров А.П.; Парлашкевич В.С., канд. техн. наук, проф. каферы металлических конструкций МГСУ.

 

ПРИМЕНЕНИЕ ВЫСОКОПРОЧНЫХ СТАЛЕЙ В СТРОИТЕЛЬСТВЕ ТЕПЛОВЫХ ЭЛЕСТРОСТАНЦИЙ

 

В ближайшем будущем предполагается массовое строительство пылеугольных электростанций, как в России, так и за рубежом. В настоящее время возрастает стоимость природного газа и это делает строительство парогазовых электростанций нерентабельным особенно в тех регионах, где поблизости могут находиться места добычи угля. В этих регионах наиболее выгодным оказывается строительство пылеугольных электростанций, причем наиболее выгодным является строительство блоков большой мощности: с турбоагрегатами 800 и 1200 МВт. При строительстве энергоблоков большой мощности сокращается удельная стоимость строительно-монтажных работ на киловатт установленной мощности [4]. В таких энергоблоках возможны два вида расположения турбоагрегата: – продольное и поперечное (рис.1). Наиболее выгодным является поперечное расположение (рис.1, б) которое обеспечивает меньшую протяженность трубопроводов острого пара, более высокий коэффициент полезного действия энергоблока и меньшее количество ограждающих конструкций и незанятых площадей главного корпуса[3].

 

а                                                                                б

 

Рис.1.  Схемы расположения турбоагрегатов:

а – продольное расположение турбоагрегата;  б – поперечное расположение турбоагрегата

 

Такая схема реализована в девятом энергоблоке Костромской ГРЭС [5] с использованием турбоагрегатов 1200 МВт. При поперечном расположении турбоагрегатов пролет фермы машинного зала должен быть 84 м. Ферма с таким пролетом с применением сталей обычной и повышенной прочности получается тяжелой и кроме того мостовых кранов грузоподъемностью 125/20 т и пролетом более 80 м нет. На Костромской ГРЭС машинный зал главного корпуса запроектирован двухпролетным с использованием подстропильных ферм в среднем ряду колонн (рис.2, а). Пролет подстропильной фермы по оси  А1 составляет 48 м. Недостатками данного решения являются высокая металлоемкость подстропильной фермы и разделение объема машинного зала на два участка (пролета). Это затрудняет обслуживание технологического оборудования.

В целях снижения металлоемкости было решено изменить компоновку энергоблока [3]. В частности, был произведен отказ от мостовых кранов грузоподъемностью 125/20 т, необходимых только для монтажа статора генератора. В новой компоновке предусматриваются размещение козлового крана вдоль оси турбоагрегата и 2 многопролетных подвесных крана фирмы Demag (рис 3). Монтаж статора генератора предполагается осуществлять по зарубежной технологи с применением транспортной эстакады со стороны торца турбинного отделения по технологии фирм Mammoet и Titan (рис. 4).

а                                                                                б

Рис. 2.  Схема поперечного сечения машинного зала:

а – при двухпролетном решении;   б – при однопролетном решении (пролет фермы 84 м);

 

 

Рис. 3. Многопролетный подвесной кран;

 

 

Рис. 4. Монтаж статора генератора с помощью транспортной эстакады;

Для решения нового варианта компоновки была запроектирована ферма пролетом 84 м.

Для расчета фермы использовался программный комплекс “SCADOffice 11.5”. В результате расчетов получены усилия в элементах фермы (рис. 5).Набольшее усилие сжатия в верхнем поясе фермы равнялось 5719,9 кН. Естественно, что для подбора сечения элементов фермы с большими усилиями была принята высокопрочная сталь С590 c расчетным сопротивлением 575 кН/см2. Для менее нагруженных элементов применяли сталь С 345 и С375.

Сталей высокой прочности целесообразно применять в центрально растянутых и центрально сжатых элементах. Сечения верхних и нижних поясов ферм были приняты из прокатного двутавра 30К3. Для решетки использовались сечения из двух швеллеров, соединенных планками. Соединения элементов решено было выполнить на фасонках. Возможно соединение в сварном и болтовом исполнении. При выполнении сварного соединения должны применяться сварочные материалы и сварочные технологии, предназначенные для сварки высокопрочных сталей.

Для удобства транспортировки предусмотрена разбивка фермы на 8 отправочных марок и 7 дополнительных элементов.

 

Рис. 5.  Эпюры усилий в стержнях фермы;

 

По результатам расчетов были определена эффективность в снижении металлоемкости и стоимости фермы пролетом 84 м при переходе на высокопрочные стали. Снижение металлоемкости фермы составило 40% и экономическая эффективность в пересчете на современные расценки – в 33%. [7]

Это показывает актуальность применения высокопрочных сталей в энергетическом строительстве ближайшего будущего при создании полиблоков большой мощности и строительстве других большепролетных объектов.

 

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

 

  1. Пергаменщик Б.К. Компоновки главных корпусов тепловых электростанций. Москва, 1995г.
  2. Воронцов Г.И. Экономике быть экономной. Энергетическое строительство, №3, 1982 г. Энергоиздат, 1982 г.
  3. Проектная документация по Костромской ГРЭС. Костромская ГРЭС IIIя очередь. ГПИ Днепростальконструкция, Днепропетровск, 1975 г.
  4. Марочник стали и сплавов. www.splav-kharkov.com.
  5. www.mzstal.ru
  6. Металлические конструкции./ под ред. Кудишина Ю.И. Изд. центр “Академия”, Москва, 2007.– 688с.
  7. Москалев Н.С., Пронозин Я.А., Парлашкевич В.С., Корсун Н.Д. Металлические конструкции, включая сварку. / под ред. Парлашкевич В.С. – М.:Изд. АСВ, Москва, 2014. – 352с.
Рейтинг: 0

Автор публикации

0
не в сети 7 лет

Shashkov_Alexey

Комментарии: 0Публикации: 7Регистрация: 16-02-2016

Оставьте комментарий


Яндекс.Метрика
Авторизация
*
*


Регистрация
*
*
*

Генерация пароля